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Abstract Understanding human activity is very challeng-
ing even with the recently developed 3D/depth sensors.
To solve this problem, this work investigates a novel deep
structured model, which adaptively decomposes an activity
instance into temporal parts using the convolutional neural
networks. Our model advances the traditional deep learn-
ing approaches in two aspects. First, we incorporate latent
temporal structure into the deep model, accounting for large
temporal variations of diverse human activities. In particular,
we utilize the latent variables to decompose the input activ-
ity into a number of temporally segmented sub-activities,
and accordingly feed them into the parts (i.e. sub-networks)
of the deep architecture. Second, we incorporate a radius–
margin bound as a regularization term into our deep model,
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which effectively improves the generalization performance
for classification. Formodel training,we propose a principled
learning algorithm that iteratively (i) discovers the optimal
latent variables (i.e. the ways of activity decomposition) for
all training instances, (ii) updates the classifiers based on the
generated features, and (iii) updates the parameters of multi-
layer neural networks. In the experiments, our approach is
validated on several complex scenarios for human activity
recognition and demonstrates superior performances over
other state-of-the-art approaches.

Keywords Human action and activity · RGB-depth
analysis · Structured model · Deep learning

1 Introduction

In computer vision, it has received increasing attention in
human activity understanding to determine what people
are doing given an observed video in different application
domains, e.g. intelligent surveillance, robotics, and human–
computer interaction. Recently developed 3D/depth sensors
have opened up new opportunities with enormous commer-
cial values, which provide more rich information (e.g. extra
depth data of scenes and objects) compared with the tradi-
tional cameras. Built upon the enriched information, human
poses can be estimatedmore easily. However,modeling com-
plicated human activities still remains challenging, mainly
due to the following difficulties.

(a) The complexity of representing high-level activities
with the rich appearance and motion information from
video. The actors may appear in diverse views or poses
under different motions, and the surrounding objects and
environments can also vary within the same activity cat-
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egory. Moreover, the depth maps provided by the 3D
sensors are often unavoidably contaminated (Oreifej and
Liu 2013) due to the noise or the self-occlusion of the
body parts.
(b) The ambiguity in the temporal segmentation of the
sub-activitieswhich constitute an activity.An activity can
be considered as a sequence of actions (i.e. sub-activities)
occurred over time (Chaquet et al. 2013). For instance,
the activity of “microwaving food” can be temporally
decomposed into several parts such as picking up food,
walking and operating microwave. However, the activity
compositionmay vary for a category of activity instances.
Figure 1 shows two activities belonging to the same cate-
gory, where the temporal lengths of decomposed actions
are different for different subjects. It is therefore difficult
to capture the temporal variation of activities during the
category recognition.

Most of previous methods recognize 3D human activi-
ties by training discriminative/generative classifiers based
on carefully designed features (Xia et al. 2012b; Oreifej and
Liu 2013; Xia and Aggarwal 2013; Wang et al. 2012). These
approaches often require sufficient domain knowledge and
heavy feature engineering because of the difficulty (a), which
could limit their applications. To improve the discriminative
performance, some compositional methods (Wang and Mori
2011; Chaquet et al. 2013) model complex activities by seg-
menting the videos into temporal segments of fixed length.
But because of the difficulty (b), they may have problems
handling complex activities composed of actions of diverse
temporal durations, e.g. the examples in Fig. 1.

In this work, we develop a deep structured human activ-
ity model to address the above mentioned challenges, and
demonstrate superior performance over other state-of-the-art
approaches on the task of recognizing human activities from

Fig. 1 Two activities of the same category.We consider one activity as
a sequence of actions occurred over time, and the temporal composition
of an action may differ for different subjects

Grayscale-Depth videos which are captured by a RGB-D
camera (i.e. Microsoft Kinect). Our model adaptively repre-
sents the input activity instance as a sequence of temporally
separated sub-activities, and each one is associated with a
cubic-like video segment of a flexible length. Our model
is inspired by the effectiveness of two widely successful
techniques: deep learning (LeCun et al. 1990; Hinton and
Salakhutdinov 2006; Krizhevsky et al. 2012; Ji et al. 2013;
Wu et al. 2013; Luo et al. 2013b; Wang et al. 2014) and the
latent structured models (Zhu and Mumford 2007; Felzen-
szwalb et al. 2010; Amer and Todorovic 2012; Pei et al.
2011; Lin et al. 2015). One example of the former is convolu-
tional neural networks (CNNs), which was recently applied
to generate powerful features for video classification (Ji et al.
2013; Karpathy et al. 2014). On the other hand, the latent
structured models [such as Deformable Part-based Model
(Felzenszwalb et al. 2010)] have been demonstrated as an
effective class of models for handling large object variations
for recognition and detection. One of the key components in
these models is the reconfigurable flexibility of model struc-
ture, which often implemented by estimating latent variables
during inference.

We adopt the deep CNN architecture (LeCun et al. 1990;
Ji et al. 2013) to layer-wisely extract features from the input
video data, and the architecture are vertically decomposed
into several sub-networks corresponding to the video seg-
ments, as Fig. 2 illustrates. In particular, our model searches
for the optimal composition for each activity instance during
the recognition, which is the key to handle the temporal vari-
ation of human activities. Moreover, we introduce relaxed
radius–margin bound into our deep model, which effectively
improves the generalization performance for classification.
In the following, we briefly overview the main components
of our model and summarize the advantages.

First, the configuration of our deep model can be flexibly
adjusted to adapt to different input videos, and the signifi-
cance of this property has been justified for human action
recognition (Liang et al. 2013; Tang et al. 2012; Wang et al.
2014). In our approach, we make our model adaptively cap-
ture temporal structure by using the latent variables. This
motivation finely accords with a batch of existing part-based
structured models in visual recognition (Lin et al. 2015; Luo
et al. 2014). More specifically, we utilize the latent vari-
ables to explicitly represent the temporal composition of the
human activities, i.e. the input video is partitioned into sev-
eral segments of alterable lengths (each segment indicating
a sub-activity). The different temporal compositions actu-
ally correspond to the different temporal durations of the
separated sub-activities. And the frames of different video
segments are extracted to feed to the corresponding sub-
networks.

During the inference of activity recognition, we aggre-
gate the responses from sub-networks while searching for
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Fig. 2 The architecture of spatio-temporal convolutional neural net-
works. The neural networks are stacked up by convolutional layers,
max-pooling operators and a fully connected layer, where the raw seg-
mented videos are treated as the input. A sub-network is referred to

a vertically-decomposed subpart stacked up by several layers, which
extracts features for one segmented video section (i.e. one sub-activity).
Moreover, by using the latent variables, our architecture is capable of
explicitly handling diverse temporal compositions of complex activities

the optimal temporal activity segmentation. This inference
will inevitably cause extra computation cost just like tradi-
tional latent structured models (Lin et al. 2015). It is worth
mentioning that we can implement the inference in a parallel
manner usingGraphic ProcessingUnit (GPU) programming,
in order to counter-balance the extra computational demand.

Second, we integrate the radius–margin regularization
with the deep feature learning, effectively conducting the
classification with good generalization performance. Col-
lecting 3D data of human activities is relatively expensive
in practice, while the large amount of training data plays
a critical role in recent successful deep learning approaches
(Krizhevsky et al. 2012; Luo et al. 2014; Karpathy et al.
2014). On the other hand, the max-margin methods (e.g.
Support Vector Machines) have shown very impressive gen-
eralization power and thus been widely applied for small
scale training data. According to (Do et al. 2009; Chung
et al. 2003), their performance (i.e. the error rate) for classi-
fication depends on not only the margin of positive/negative
samples but also the radius of the enclosing ball of all sam-
ples, and this is more critical for joint learning of feature
representation and classifier. Inspired by these works, we
incorporate a radius–margin bound as a regularizer into our
deep model, and demonstrate better generalization perfor-
mance compared to the softmax or SVM classifier. More
detailed discussion will be presented Sect. 3.3

Training our deep structured model is nontrivial, as it
needs to jointly optimize three components: (i) the activ-
ity decomposition, (ii) the classifier upon the generated
features, and (iii) the neural networks. Seeking the global

optimum for such a model is extremely intractable due to the
non-convexity, and we consider an approximate solution by
iteratively optimizing these components for a local conver-
gence. In each iteration, the learning algorithm performs the
following three steps.

1. We compute the optimal latent variables (i.e. sub-activity
decompositions) for all training activities, and their fea-
ture vectors are then specified.

2. Based on the generated features, we optimize the classi-
fication margin of all training examples under the fixed
radius bound.

3. We learn the parameters of theCNNs using the traditional
backward propagation, which will lead to the decrease of
the radius.

The main contributions of this work are several folds.
First, we present a novel deep neural network model to han-
dle various challenges in 3D human activity recognition,
and demonstrate superior performance over state-of-the-art
approaches under several challenging scenarios. Second, our
deep model incorporates latent temporal structure to account
for large temporal variations of diverse human activities. To
the best of our knowledge, this is a novel contribution to
the literature of deep learning. Third, we unify the radius–
margin method with the feature learning in a principled way,
providing a very general framework for many classification
tasks. In addition, we construct a new database of RGB-D
data, which includes 1180 instances of human activities in
20 categories.
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The remainder of the paper is organized as follows. Sec-
tion 2 presents a review of related work. Then we present
our deep model in Sects. 3 and 4, followed by a description
of model learning algorithm in Sect. 5. Section 6 discusses
the procedure of activity recognition using our model. The
experimental results, comparisons and component analysis
are exhibited in Sect. 6. Section 7 concludes this paper.

2 Related Work

Many works on human action/activity recognition mainly
focus on designing robust and descriptive features (Xia and
Aggarwal 2013; Gupta et al. 2013; Oreifej and Liu 2013; Ni
et al. 2013b; Zhou et al. 2009; Yang et al. 2012; Scovanner
et al. 2007). For example, Xia andAggarwal (2013) extracted
spatio-temporal interest points from depth videos (DSTIP)
and developed a depth cuboid similarity feature (DCSF) to
model human activities. Oreifej and Liu (2013) proposed
to capture spatio-temporal changes of activities by using a
histogramof oriented 4D surface normals (HON4D).Most of
thesemethods, however, overlookeddetailed spatio-temporal
structure information, and limited in periodic activities.

Several compositional part-based approaches have been
studied for complex scenarios and achieved substantial pro-
gresses (Wang and Mori 2011; Wang et al. 2013, 2012;
Zhao et al. 2013; Packer et al. 2012; Sadanand and Corso
2012; Cheng et al. 2011), and they represent an activity with
the deformable parts and contextual relations. For instance,
Wang and Mori (2011) recognized human activities in com-
mon videos by training the hidden conditional random fields
in amax-margin framework. For activity recognition inRGB-
D data, Packer et al. (2012) employed the latent structural
SVM to train the model with part-based pose trajectories
and object manipulations. An ensemble model of actionlets
were studied in Wang et al. (2012) to represent 3D human
activities with a new feature called local occupancy pattern
(LOP). To handlemore complicated activitieswith large tem-
poral variations, some improved models (Tang et al. 2012;
Wang and Wu 2013; Brendel and Todorovic 2011) discov-
ered temporal structures of activities by localizing sequential
actions. For example,Wang andWu (2013) proposed to solve
the temporal alignment of actions by maximum margin tem-
poral warping. Tang et al. (2012) captured the latent temporal
structures of 2D activities based on the variable-duration hid-
den Markov model. Koppula and Saxena (2013) applied the
Conditional Random Fields to model the sub-activities and
affordances of the objects for 3D activity recognition.

Recently, the And–Or graph representations are intro-
duced as extensions of the part-based models (Zhu and
Mumford 2007; Pei et al. 2011; Liang et al. 2013; Tu et al.
2014; Lin et al. 2009), and produce very competitive per-
formance to deal with large data variations. These models

incorporate not only the hierarchical decompositions, but
also the explicit structural alternatives (e.g. the differentways
of compositions). Zhu andMumford (2007) first explored the
And–Or graph models for image parsing. Pei et al. (2011)
then introduced the models for video event understanding,
but their approach required elaborate annotations. Liang et al.
(2013) proposed to train the spatio-temporal And–Or graph
model using a non-convex formulation, which is discrimina-
tively trained fromweakly annotated training data. However,
the above mentioned models rely on the hand-crafted fea-
tures, and their discriminative capacities are not optimized
for 3D human activity recognition.

In the mean time, the past few years have seen a resur-
gence of research in the design of deep neutral networks,
and impressive progresses have been made on learning
image features from raw data (Hinton and Salakhutdinov
2006; Krizhevsky et al. 2012; Luo et al. 2013a). To address
human action recognition from videos, Ji et al. (2013) devel-
oped a novel deep architecture of convolutional networks,
where they extracted features from both spatial and tempo-
ral dimensions. Luo et al. (2014) proposed to incorporate
a new Switchable Restricted Boltzmann Machine (SRBM)
to explicitly model the complex mixture of visual appear-
ance for pedestrian detection, and train their model using an
EM-type interative algorithm. Amer and Todorovic (2012)
applied Sum Product Networks (SPNs) to model human
activities based onvariable primitive actions.Our deepmodel
is partially motivated by these works, and we target on an
more flexible and powerful solution by jointly considering
the latent structure embedding, feature learning, and radius–
margin classification.

Recently, recurrent neural networks (RNN) has been used
for activity recognition due to its capability inmodeling com-
plex temporal dynamics. Donahue et al. (2015) presented a
long-term recurrent convolutional network (LRCN) archi-
tecture to integrates CNN and RNN into an unified model,
and achieved promising results in a number of vision tasks.
Venugopalan et al. (2015) further improved LRCNby adding
a pooling layer and had shown its potentials in video descrip-
tion. The main difference between RNN models and ours is
that their models exploit several types of neural gates and
memory cells to learn temporal dynamics implicitly, while
our deep structured model explicitly accounts for temporal
variations of human activities by inferring latent variables.
Specifically, compared with these RNN models, our model
has the following advantages. First, the temporal compo-
sition is explicitly captured by our model, giving rise to a
better interpretability, i.e. the semantic correspondence of
video segments and sub-activities. Second, as some recent
works report (Bayer et al. 2014), the RNN models may
have problems on using common dropout tricks and this
limitation would influence the performances. Moreover, the
integration with explicit regularization approaches (e.g. the
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radius–margin bound) is also an important superiority of our
model.

3 Deep Structured Model

In this section,we introduce themain components of our deep
structured model, including the spatio-temporal CNNs, the
latent structure of activity decomposition, and the radius–
margin bound for classification.

3.1 Spatio-temporal CNNs

We propose an architecture of spatio-temporal convolu-
tional neural networks (CNNs), as Fig. 2 illustrates. In
the input layer, the activity video is decomposed into M
video segments, where each segment associates to one sep-
arated sub-activity. Accordingly, the proposed architecture
consists of M sub-networks to extract features from the cor-
responding decomposed video segments, respectively. Our
spatio-temporal CNNs involve both 3D and 2Dconvolutional
layers. The 3D convolutional layer extracts spatio-temporal
features for jointly capturing appearance and motion infor-
mation, and is followedbyamax-poolingoperator to improve
the robustness against local deformations and noise. As
shown inFig. 2, each sub-network (highlighted by the dashed
box) is stacked up by two 3D convolutional layers and one
2D convolutional layer. For the input to each sub-network,
the number of frames is very small (e.g. 9). After two layers
of 3D convolution followed with max-pooling, the tempo-
ral dimension for each set of feature maps is too small to
perform 3D convolution. Thus, we stack a 2D convolutional
layer upon the two 3D convolutional layers. The outputs from
different sub-networks are merged to be fed to one fully con-
nected layer that generates the final feature vector of the input
video.

3.2 Latent Temporal Structure

Unlike the traditional deep learning methods with the fixed
architectures, we incorporate latent structure into the deep
model to flexibly adapt to the input video during inference
and learning. To address the large temporal variation of
human activities, we assume the input video is temporally
divided into a number M of segments, corresponding to
the sub-activities. We associate the CNNs with the video
segmentation by feeding each segmented part into a sub-
network as Fig. 2 illustrates. Next, according to the way of
video segmentation (i.e. decomposition of sub-activities), we
manipulate the CNNs by inputting sampled video frames.

Specifically, we index each video segment by its start-
ing anchor frame s j and its temporal length (i.e. the number
of frames) t j for each sub-network, which must take m

h1 h2

Fig. 3 Illustration of incorporating latent structure into the deepmodel.
Different sub-networks are denoted by different colors

video frames as the input. Note that when t j �= m, a uni-
form sampling is performed to extract m key frames. Thus,
for all video segments, we denote the indexes of starting
anchor frames as (s1, . . . , sM ) and their temporal lengths
as (t1, . . . , tM ), which are regarded as the latent variables
in our model, h = (s1, . . . , sM , t1, . . . , tM ). These latent
variables specifying the segmentation will be adaptively esti-
mated for different input videos. Figure 3 shows an intuitive
example of our structured deep model, where the input video
are segmented into three sections corresponding to the three
sub-networks in our deep architecture. In this way, the con-
figuration of the CNNs are dynamically adjusted together
with searching for the appropriate latent variables of input
videos.

Given the parameters of CNNs ω and the input video xi
with its latent variables hi , the generated feature of xi can be
represented as φ(xi ;ω, hi ).

3.3 Deep Model with Relaxed Radius–Margin Bound

The large amount of training data is crucial for the suc-
cess of many deep learning models. Given sufficient training
data, the effectiveness of applying the softmax classi-
fier with CNNs has been validated for image classifica-
tion (Krizhevsky et al. 2012).However, for 3Dhumanactivity
recognition, the available training data are usually less what
we expected. For example, the CAD-120 dataset (Koppula
et al. 2013) consists of only 120 RGB-D sequences of 10 cat-
egories. Under this scenario, though parameter pre-training
and dropout are available, the model training often suffers
from the over-fitting issue. Hence, we consider introducing a
more effective classifier together with regularizer to improve
the generalization performance of the deep model.

In supervised learning, Support Vector Machine (SVM),
also known as the max-margin classifier, is theoretically
sound and generally can achieve promising performance
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Fig. 4 Illustration of our deep model with the radius–margin bound.
To improve the generalization performance for classification, we pro-
pose to integrate the radius–margin bound as a regularizer with the
feature learning. Intuitively, together with optimizing the max-margin
parameters (w, b), we shrink the radius R of the minimum enclosing

ball (MEB) of the training data that distribute in the feature space gen-
erated by the CNNs. The resulting classifier with the regularizer shows
better generalization performance compared to the traditional softmax
output

compared with the alternative linear classifiers. In the deep
learning research, the combination of SVM and CNNs
has been exploited (Huang and LeCun 2006) and obtained
excellent results in object detection (Girshick et al. 2014).
Motivated by these approaches, we impose a max-margin
classifier (w, b) upon the feature generated by the spatio-
temporal CNNs for human activity recognition.

As a max-margin classifier, standard SVM adopts ‖w‖2,
the reciprocal of the squared margin γ 2, as the regularizer.
However, the generalization error bound of SVMdepends on
the radius–margin ratio R2/γ 2, where R is the radius of the
minimum enclosing ball (MEB) of the training data (Vapnik
1998). When the feature space is fixed, the radius R is con-
stant and can thus be ignored. However, in our approach, the
radius R is determined by theMEB of the training data in the
feature space generate by the CNNs. Under this scenario, the
model has the risk that themargin can be increased by simply
expanding the MEB of the training data in the feature space.
For example, simply multiplying a constant to the feature
vector can enlarge the margin between the positive and neg-
ative samples, but obviously it will not really work for better
classification. To overcome this problem, we incorporate the
radius–margin bound together with the feature learning, as
Fig. 4 illustrates. In particular, we impose amax-margin clas-
sifier with radius information upon the feature generated by
the fully connected layer of the spatio-temporal CNNs. The
optimization tends to maximize the margin while shrinking
the MEB of the training data in the feature space, and we
thus obtain a tighter error bound.

Suppose there are a set of N training samples (X,Y ) =
{(x1, y1), . . . , (xN , yN )},where xi is the video, y∈{1, . . . ,C}
represents the category labels andC is the number of activity

categories. We extract the feature for each xi by the spatio-
temporal CNNs, φ(xi ;ω, hi ), where hi refers to the latent
variables. By adopting the squared hinge loss and the radius–
margin bound, we define the following loss function L0 of
our model:

L0 =

Radius−margin Ratio
︷ ︸︸ ︷

1

2
‖ w ‖2 R2

φ

+ λ

N
∑

i=1

max

(

0, 1 − (

wTφ(xi ;ω, hi ) + b
)

yi

)2

,

(1)

where λ is the trade-off parameter, 1/ ‖ w ‖ denotes the
margin of the separating hyperplane, b denotes the bias,
and Rφ denotes the radius of the MEB of the training
data φ(X, ω, H) = {φ(x1;ω, h1), . . . , φ(xN ;ω, hN )} in
the CNNs’ feature space. Formally, the radius Rφ is defined
as (Chapelle et al. 2002; Vapnik 1998),

R2
φ = min

R,φ0
R2, s.t.‖φ(xi ;ω, hi ) − φ0‖2 ≤ R2,∀i. (2)

The radius Rφ is implicitly defined by both the training
data and the model parameters, making that: (i) the model
in Eq. (1) is highly nonconvex, (ii) the derivative of Rφ with
respect to ω is hard to compute, and (iii) the problem is dif-
ficult to solve using the stochastic gradient descent (SGD)
method. Motivated by the radius–margin based SVM (Do
et al. 2009;Do andKalousis 2013), we investigate the relaxed
form to replace the original definition of Rφ in Eq. (2). In par-
ticular, we introduce themaximumpairwise distance R̃φ over
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all the training samples in the feature space, as

R̃2
φ = max

i, j
‖φ(xi ;ω, hi ) − φ(x j ;ω, h j )‖2. (3)

Do and Kalousis (2013) proved that Rφ could be well
bounded by R̃φ with the following lemma,

Lemma 1

R̃φ ≤ Rφ ≤ 1 + √
3

2
R̃φ.

This above Lemma guarantees that the true radius Rφ can
be well approximated by R̃φ . With the proper parameter η,
the optimal solution for minimizing the radius–margin ratio
‖w‖2R2

φ is the same with that for minimizing the radius–

margin sum ‖w‖2 + ηR2
φ (Do and Kalousis 2013). Thus, by

approximating R2
φ with R̃2

φ and replacing the radius–margin
ratio with the radius–margin sum, we suggest the following
deep model with the relaxed radius–margin bound,

L1 = 1

2
‖ w ‖2 +max

i, j
‖φ(xi ;ω, hi ) − φ(x j ;ω, h j )‖2

+ λ

N
∑

i=1

max

(

0, 1 − (

wTφ(xi ;ω, hi ) + b
)

yi

)2

.

(4)

However, the first max operator in Eq. (4) is non-smooth
and defined over all pairs of training samples, and it is thus
unsuitable for using the mini-batch-based SGD optimization
method. In the following, we first use the softmax function
to avoid the non-smoothness of the max operator, and then
further relax the radius to avoid the definition over all pairs of
training samples. More specifically, we first transfer the max
operator into a softmax form, resulting the following model,

L2 = 1

2
‖ w ‖2 +η

∑

i, j

κi j‖φ(xi ;ω, hi ) − φ(x j ;ω, h j )‖2

+ λ

N
∑

i=1

max

(

0, 1 − (

wTφ(xi ;ω, hi ) + b
)

yi

)2

.

(5)

with

κi j = exp(α‖φ(xi ;ω, hi ) − φ(x j ;ω, h j )‖2)
∑

i j exp(α‖φ(xi ;ω, hi ) − φ(x j ;ω, h j )‖2) , (6)

where κi j is a coefficient measuring the correlation of the two
samples and α ≥ 0 is the parameter to control the approxi-
mation degree to the hard max operator. When α is infinite,
the approximation in Eq. (5) becomes the model in Eq. (4).

Specifically, when α = 0, there is κi j = 1/N 2, and the
relaxed loss function can be reformulated as:

L3 = 1

2
‖ w ‖2 +2η

∑

i

‖φ(xi ;ω, hi ) − φ̄ω‖2

+ λ

N
∑

i=1

max

(

0, 1 − (

wTφ(xi ;ω, hi ) + b
)

yi

)2

.

(7)

with

φ̄ω = 1

N

∑

i

φ(xi ;ω, hi ). (8)

The optimization objectives in Eqs. (5) and (7) are two
relaxed losses of our deepmodelwith the strict radius–margin
bound in Eq. (1). In this work, we focus on the objective in
Eq. (7) for the model training. The learning algorithm will
be discussed in Sect. 5.

4 Implementation

In this section, we first explain the implementation that
makes our model adaptive to alterable temporal structure,
and then describe the detailed setting of our deep architec-
ture.

4.1 Latent Temporal Structure

During our learning and inference procedures, we search for
the appropriate latent variables that determine the tempo-
ral decomposition of the input video (i.e. the decomposition
of activities). There are two parameters related to the latent
variables in our model: the number M of video segments
and the temporal length m of each segment. Note that the
sub-activities decomposed by ourmodel have no precise defi-
nition given a complex activity, i.e. actions can be ambiguous
depending on the considering temporal scale.

To incorporate the latent temporal structure, we asso-
ciate the latent variables with the neurons (i.e. convolutional
responses) in the bottom layer in the spatio-temporal CNNs.

The choice of the number of segments M is important
to the performance of 3D human activity recognition. The
model with a small M could be less expressive to handle
temporal variations, while a large M could lead to over-
fitting due to high complexity. Furthermore, when M = 1,
the model latent structure would be disabled, and our archi-
tecture degenerates to the conventional 3D-CNNs (Ji et al.
2013). By referring to the setting of the number of parts for
the deformable part-based model (Felzenszwalb et al. 2010)
in object detection, the value M can be set by the cross vali-
dation on a small set. In all our experiments, we set M = 4.
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Considering that the number of frames of the input videos
are diverse, we develop a process to normalize the inputs by
two-step sampling in the learning and inference procedure.
First, we sample 30 anchor frames uniformly from the input
video. Based on these anchor frames, we search for all of
the possible non-overlapped temporal segmentations, and the
anchor frame segmentation corresponds to the segmentation
of the input video. Then, fromeach video segment (indicating
a sub-activity) we uniformly sample m frames to feed the
neural networks, and in our experiments we set m = 9. In
addition, we reject the possible segmentations that cannot
offer m frames for any video segment.

For an input video, the possibility of temporal structure
variations is 115 in our experiments (i.e. the possible enu-
meration numbers of anchor frame segmentation).

4.2 Architecture of Deep Neural Networks

The proposed spatio-temporal CNN architecture is con-
structed by stacking up two 3D convolution layers, one 2D
convolution layer and one fully connected layer, and the
max-pooling operator is deployed after each 3D convolu-
tional layer. In the following, we introduce the definitions
and implementations of these components in our model.

3D Convolutional Layer. The 3D convolution operation
is adopted to perform convolutions spanning over both spa-
tial and temporal dimensions for the characterization of both
appearance and motion features (Ji et al. 2013). Suppose p is
the input video segment with the width w, the height h, and
the number of frames m, ω is the 3D convolutional kernel
with the the width w′, height h′, and temporal length m′. As
shown in Fig. 5, a feature map v can be obtained by per-
forming 3D convolutions from the sth to the (s + m′ − 1)th

Fig. 5 Illustration of the 3Dconvolution across both spatial and tempo-
ral domains. In this example, the temporal dimension of the 3D kernel is
3, and each feature map is thus obtained by performing 3D convolutions
across 3 adjacent frames

frames, where the response for the position (x, y, s) in the
feature map is defined as,

vxys = tanh

⎛

⎝b +
k′−1
∑

i=0

h′−1
∑

j=0

m′−1
∑

k=0

ωi jk · p(x+i)(y+ j)(s+k)

⎞

⎠ ,

(9)

where p(x+i)(y+ j)(s+k) denotes the pixel value of the input
video p at position (x + i, y + j) in the (s + k)th frame,
ωi jk denotes the value of the convolutional kernel ω at the
position (i, j, k), b stands for the bias, and tanh denotes the
hyperbolic tangent function. Thus, given p andω,m−m′+1
feature maps can be obtained, each with size of (w − w′ +
1, h − h′ + 1).

Based on the 3D convolution operation, 3D convolution
layer is designed for spatio-temporal feature extraction by
considering three issues:

– Number of convolutional kernels. The feature maps
generated by one convolutional kernel are limited in cap-
turing appearance and motion information. To generate
more types of features, several kernels are employed in
each convolutional layer. We define the number of 3D
convolutional kernels in the first layer as c1. After the
first 3D convolutions, we obtain c1 sets of m − m′ + 1
feature maps. Then we use 3D convolutional kernels on
the c1 sets of feature maps, and obtain c1 × c2 sets of
feature maps after the second 3D convolution layer.

– Decompositional convolutional networks. Our deep
model consists of M sub-networks, and the input video
segment to each sub-network involvesm frames (the later
frames might be unavailable). In the proposed architec-
ture, all of the sub-networks use the same structure but
each one has its own convolutional kernels, as we assume
that each temporally decomposed sub-activity has its dis-
tinct features in terms of discriminative classification. For
example, the kernels belonging to the first sub-network
are only deployed to perform convolutions on the first
temporal video segment. .

– Application to gray-depth video. The RGB images are
first converted to the gray-level images, and the gray-
depth video is then adopted as the input to the neural
networks. The 3D convolutional kernels in the first layer
are respectively applied for both the gray channel and the
depth channel in the video, and the convolution results
from these two channels are further aggregated to pro-
duce the feature maps. Note that the dimensions of the
features remain the same as from only one channel.

In our implementation, the input frame is scaled with the
height h = 80 and widthw = 60. In the first 3D convolution
layer, the number of 3D convolutional kernels is c1 = 7, and
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the size of the kernel isw′×h′×m′ = 9×7×3. In the second
layer, the number of 3D convolutional kernels is c2 = 5, and
the size of the kernel is w′ × h′ × m′ = 7 × 7 × 3. Thus,
we have 7 sets of feature maps after the first 3D convolution
layer, and obtain 7 × 5 sets of feature maps after the second
3D convolution layer.

Max-pooling Operator. After each 3D convolution, the
max-pooling operation is introduced to enhance the defor-
mation and shift invariance (Krizhevsky et al. 2012; Yu et al.
2011). Given a feature map with the size of a1×a2, a d1×d2
max-pooling operator is performed by taking the maximum
of every non-overlapping d1 × d2 sub-regions of the feature
map, resulting in an a1/d1 × a2/d2 pooled feature map. In
our implementation, 3×3max-pooling operator was applied
after every 3Dconvolution layers.After two layers of 3Dcon-
volution and max-pooling, for each sub-network, we have
7 × 5 sets of 6 × 4 × 5 feature maps.

2D Convolutional Layer. After two layers of 3D convolu-
tion followedwithmax-pooling, 2D convolution is employed
to further extract higher-level complex features. The 2D con-
volution can be viewed as a special case of 3D convolution
with m′ = 1, which is defined as

vxy = tanh

⎛

⎝b +
k′−1
∑

i=0

h′−1
∑

j=0

ωi j · p(x+i)(y+ j)

⎞

⎠ , (10)

where p(x+i)(y+ j) denotes the pixel value of the feature map
p at position (x + i, y + j), ωi j denotes the value of the
convolutional kernel ω at the position (i, j), and b denotes
the bias. In the 2D convolution layer, suppose the number
of 2D convolutional kernels is c3, c1 × c2 × c3 sets of new
feature maps are obtained by performing 2D convolutions on
c1 × c2 sets of feature maps generated by the the second 3D
convolution layer.

In our implementation, the number of 2D convolutional
kernels is set as c3 = 4 with the kernel size 6× 4. Hence for
each sub-network we can obtain 700 feature maps with size
1 × 1.

Fully Connected Layer. There is only one fully connected
layer with 64 neurons in our architecture. All these neurons
connect to a vector of 700× 4 = 2800 dimensions, which is
generated by concatenating the feature maps from all of the
sub-networks. The margin-based classifier is defined based
on the output of the fully connected layer, where we adopt
the squared hinge loss to predict the activity categories as

θ(z) = argmax
i

(

wT
i z + bi

)

(11)

where z is the 64-dimensional vector from the fully connected
layer, and {wi , bi } denotes the weight and bias connected to
the i-th activity category.

Dropout trick. Since our deep architecture contains a large
number of parameters (i.e. 179,200 weighs at the fully-
connected layer), we apply the standard dropout approach
during the model training to alleviating the over-fitting prob-
lem. According to the recent reports Srivastava et al. (2014),
the dropout method is capable of effectively improving the
generalization power of neural network models by randomly
turning off the neurons in the learning. Specifically, we set
turning-off probability rate is 0.6 for each neuron at the fully-
connected layer in each learning iteration, and this dropout
approach is applied by default in every experiment.

5 Learning Algorithm

The proposed deep structured model involves three com-
ponents to be optimized: (i) the latent variables H that
manipulate the activity decomposition, (ii) the margin-based
classifier {w, b}, and (iii) theCNNs’ parametersω. The latent
variables are not continuous and need to be estimated adap-
tively for different input videos, making the standard back
propagation algorithm (LeCun et al. 1990) unsuitable for our
deep model. In this section, we present a joint component
learning algorithm that iteratively optimizes the three com-
ponents. Moreover, to overcome the problem of insufficient
3D data, we propose to borrow the large amount of 2D videos
to pre-train the CNNs’ parameters in advance.

5.1 Joint Component Learning

Denote (X,Y ) = {(x1, y1), . . . , (xN , yN )} as the training
set with N examples, where xi is the video, yi ∈ {1, . . . ,C}
denotes the activity category. Denote H = {h1, . . . , hN } as
the set of latent variables for all training examples. Themodel
parameters to be optimized can be divided into three groups,
i.e. H , {w, b}, and ω. Fortunately, given any two groups of
parameters, the other group of parameters can be efficiently
learned using either the stochastic gradient descent (SGD)
algorithm (e.g. for {w, b} and ω) or enumeration (e.g. for
H ).

Therefore, we adopt a principled coordinate type algo-
rithm to optimize the our deep structured model in Eqs. (5)
and (7). This learning algorithm actually is a general expec-
tation maximization (GEM) method (Wu 1983), which
iteratively performs the E-step and the M-step: the former
discovering the optimal latent variables by global searching
and the latter optimizing the CNN and classifier parameters
for a sub-optimal solution. As shown in (Wu 1983), such a
GEM procedure can converge monotonically to a stationary
point. More specifically, our learning algorithm iterates with
the three steps: (i) Given the model parameters {w, b} andω,
we estimate the latent variables hi for each video and update
the corresponding feature φ(xi ;ω, hi ) (Fig. 6a); (ii) Given
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hi

(xi, hi)

( ∂L
∂w , ∂L

∂b )

(w, b, H)

(w, b, ω)

φ(xi;ω, hi)

φ(X;ω,H)

φ(X;ω,H)

(a) (c)

(b)

Fig. 6 Illustration for our joint component learning algorithm. It itera-
tively performswith the three steps:a given the classification parameters
{w, b} and the CNNs’ parameters ω, we estimate the latent variables
hi for each video and generate the corresponding feature φ(xi ; ω, hi );

b given the updated features φ(X; ω, H) for all training examples, the
classifier {w, b} is updated via SGD ; c given {w, b} and H , back prop-
agation updates the CNNs’ parameters ω

the updated features φ(X;ω, H), we update the max-margin
classifier {w, b} (Fig. 6b); (iii) Given the model parameters
{w, b} and H , we update the CNN parameters ω, which will
lead to both the increase of themargin and the decrease of the
radius (Fig. 6c). It is worth mentioning that the two steps (ii)
and (iii) can be performed in the same procedure of SGD, i.e.
their parameters are jointly updated in an end-to-end way.

In the following, we explain in detail the three steps for
minimizing the loss in Eq. (7), which are derived from our
deep model.

(i) Given the model parameters ω and {w, b}, for each
sample (xi , yi ), the most appropriate latent variables hi can
be determined by exhaustive searching over all the possible
choices,

h∗
i = argmin

hi
1 − (

wφ(xi ;ω, hi ) + b
)

yi . (12)

GPU programming is employed to accelerate the searching
process. With the updated latent variables, we further obtain
the feature set φ(X;ω, H) of all the training data.

(ii) Given φ(X;ω, H) and the CNNs’ parameters ω,
batch stochastic gradient descent (SGD) is adopted for updat-
ing model parameters in Eq. (7). In iteration t , a batch
Bt ⊂ (X,Y, H) of k samples is chosen. We can obtain the
gradients of the max-margin classifier with respect to para-
meters {w, b},

∂L3

∂w
= w − λ

∑

(xi ,yi ,hi )∈Bt
yiφ(xi ; ω, hi )max

(

0, 1 − (

wT φ(xi ; ω, hi ) + b
)

yi

)

, (13)

∂L3

∂b
= −2λ

∑

(xi ,yi ,hi )∈Bt
yi max

(

0, 1 − (

wT φ(xi ; ω, hi ) + b
)

yi

)

,

(14)
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(iii)Given the latent variables H and themax-margin clas-
sifier {w, b}, based on the gradients with respect to ω, the
back propagation algorithm can be adopted to learn CNNs’
parameters ω. More specifically, we first update the mean
φ̄ω in Eq. (8) based on φ(X;ω, H), and then compute the
derivative of the relaxed loss in Eq. (7) as

∂L3

∂ω
= 4η

∑

(xi ,yi ,hi )∈Bt

(

φ(xi ; ω, hi ) − φ̄ω

)T ∂φ(xi ; ω, hi )

∂ω

− 2λ
∑

wT yi
∂φ(xi ; ω, hi )

∂ω
max

(

0, 1 − (

wT φ(xi ; ω, hi ) + b
)

yi

)

.

(15)

By performing the proposed back propagation algorithm,
we can further decrease the relaxed loss and optimize the
model parameters. During the back propagation, batch SGD
is adopted to simultaneously update the parameters of both
step (ii) and (iii). Theoptimization algorithm iterates between
these three steps until convergence.

5.2 Model Pre-training

Parameter pre-training followed by fine-tuning is an effective
method to boost the performance in deep learning, especially
when the training data is scarce. In the literature, there are
two popular solutions, i.e. unsupervised pre-training on unla-
beled data (Sermanet et al. 2013) and supervised pre-training
for an auxiliary task (Girshick et al. 2014). The latter usu-
ally requires the data formate (e.g. image) for parameter
pre-training is exactly the same as that (e.g. image) for fine-
tuning.

In our approach, we suggest an alternative solution for
3D human activity recognition. Although collecting RGB-D
videos of human activities is expensive, a large amount of 2D
activity videos can be easily obtained. Consequently, we first
apply the supervised pre-training using a large number of 2D
activity videos, and then fine-tune the CNNs’ parameters for
training the 3D human activity models.

In the step of pre-training, the CNNs’ parameters are ran-
domly initialized at the beginning. For each input 2D video,
we equally segment it into M parts without estimating its
latent variables. Here we simply employ the softmax clas-
sifier to pre-train the parameters of CNN, since the softmax
loss unbiasedly treat all samples and it is suitable for learning
a general feature representation (Girshick et al. 2014).

The 3D and 2D convolutional kernels obtained in pre-
training are only for gray channel. Thus, after pre-training,
we duplicate the dimension of the 3D convolutional kernels
in the first layer and initialize the parameters for the depth
channel by the parameters for the gray channel, which allows
us to borrow the features learned from the 2D video while
directly learning the higher level information from the spe-
cific 3D activity dataset. For the fully connected layer, we set
its parameters as random values.

We summarize the overall learning procedure in Algo-
rithm 1.

Algorithm 1 Learning Algorithm
Input:
The labeled 2D, 3D activity dataset and learning rate αw,b, αω.

Output:
Model parameters {ω,w, b}.

Initialization:
Pre-train the spatio-temporal CNNs using the 2D videos.

Learning on 3D video dataset:
repeat

1. Estimate the latent variables H for all samples by fixing model
parameters {ω,w, b}.

2. Optimize {w, b} given the CNN model parameters ω and the
input sample segments indicated by H :

2.1 Calculateφ(X; ω, H)by forwarding the neural networkwith
ω.

2.2 Optimize {w, b} via: w := w − αw,b ∗ ∂L
∂w by Eq. (13); b :=

b − αw,b ∗ ∂L
∂b by Eq. (14);

3. Optimize ω given {w, b} and H :

3.1 Calculate κi j , κi and φi for L2, or calculate φ̄ω for L3.
3.2 Optimize the parameters ω of the spatio-temporal CNNs: ω

:= ω − αω ∗ ∂L
∂ω

by Eq. (15).

until L in (5) or (7) converges.

6 Inference

Given an input video xi , the inference task aims to recognize
its category of the activity, which can be formulated as the
minimization of Fy(xi , ω, h)with respect to the activity label
y and the latent variables h,

(y∗, h∗)=argmax
(y,h)

{

Fy(xi , ω, h)=wT
y φ(xi ;ω, h)+by

}

.

(16)

where {wy, by} denotes the parameters of the max-margin
classifier for the activity category y. Note the possible values
for y and h are discrete. Thus the problem above can be
solved by searching across all of the labels y(1 ≤ y ≤ C) and
calculate themaximum Fy(xi , ω, h) by optimizing h. To find
the maximum of Fy(xi , ω, h), we enumerate all the possible
values of h, and calculate the corresponding Fy(xi , ω, h)

via forward propagations. Since the forward propagations
decided by different h are independent, we can parallelize
the computation via GPU to accelerate the inference process.

7 Experiments

To validate the advantages of our model, experiments are
conducted on several challenging public datasets, i.e. CAD-
120 Dataset (Koppula et al. 2013), SBU Kinect Interaction
Dataset (Yun et al. 2012), and a larger dataset newly created
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by us, namely Office Activity (OA) Dataset. Moreover, we
introduce a more comprehensive dataset in our experiments
by combining five existing datasets of RGB-D human activ-
ity. In addition to demonstrating the superior performance of
the proposed model over other state-of-the-arts, we exten-
sively evaluate the main components of our framework.

7.1 Datasets and Setting

The CAD-120 dataset comprises of 120 RGB-D video
sequences of humans performing long daily activities of 10
categories, and has been widely used for testing 3D human
activity recognition methods. These activities recorded via
the Microsoft Kinect sensor were performed by four dif-
ferent subjects, and each activity was repeated three times
by the same actor. These activities have a long sequence
of sub-activities, which vary from subject to subject signif-
icantly in terms of length of the sub-activities, order of the
sub-activities as well as in the way they executed the task.

Moreover, the challenges on this dataset also lie in the large
variance in object appearance, human pose, and viewpoint.
Several sampled frames and depth maps from this databases
of these 10 categories are exhibited in Fig. 7a.

The SBU dataset consists of 8 categories of two-person
interaction activities, including a total of about 300 RGB-D
video sequences, i.e. about 40 sequences for each interac-
tion category. Even though most interactions in this dataset
are simple, it is still challenging for modeling two-person
interactions by considering the following difficulties: (i) one
person is acting and the other person is reacting inmost cases,
(ii) the average frame length of these interaction is short
(ranging from 20 to 40), (iii) the depth maps have noises.
Figure 7b shows several sampled frames and depth maps of
these 8 categories.

The proposedOA dataset ismore comprehensive and chal-
lenging compared with the existing datasets, and it covers the
regular daily activities taken place in an office. To the best
of our knowledge, it is the largest activity dataset of RGB-

Fig. 7 Activity examples from the testing databases. Several sampled frames and depth maps are presented. a CAD-120, b SBU, c OA1, d OA2,
respectively, show two activities of the same category selected from the three databases
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D videos consisting of 1180 sequences. The OA database is
publicly accessible.1 Three RGB-D sensors (i.e. Microsoft
Kinect cameras) are utilized to capture data from differ-
ent viewpoints, and more than 10 actors are involved. The
activities are captured in two different offices to increase
the variability, where each actor performs the same activity
twice. The activities performed by two subjects with inter-
actions are also included. Specifically, it is divided into two
subsets, each of which contains 10 categories of activities:
OA1 (complex activities by a single subject) and OA2 (com-
plex interactions by two subjects). Several sampled frames
and depth maps are exhibited in Fig. 7c, d from OA1 and
OA2, respectively.

To evaluate our model under a larger scale scenario,
we collect an extra dataset by combining existing RGB-D
human activity datasets: RGBD-HuDaAct Ni et al. (2013a),
CAD120, SBU, UTKinect-Action Xia et al. (2012a) and OA.
This dataset contains 2989 video sequences with 5,500,000
frames (approximately 50h long) belonging to 50 activity
categories, and we name it asMerged_50 Dataset. Note that
we merge very similar activity categories from the differ-
ent datasets. In addition, we create a coarse-level variant of
this dataset by merging the 50 categories into only 4, that is,
all of the 2989 activity instances are roughly divided into 4
types: {a person interacting small objects (e.g. answering-
phones, having-meal), a person interacting large objects
(e.g. sleeping-in-bed, cleaning-objects), physical contacting
of persons (e.g. departing, asking-and-way), non - physi-
cal contacting of persons (e.g. exchanging objects, hugging
objects together)}. And we name this coarse-level dataset as
Merged_4.

All the experiments are executed on a desktop PC with
an Intel i7 4.0GHz CPU, 8GB RAM and GTX 980 GPU.
For model learning, Algorithm 1 is employed to learn the
CNN ω and the classifier {w, b}. The main time-consuming
part is the model pre-training, which can take several days
based on our desktop PC.Afterwards, the training time of our
model on 3D activity datasets is acceptable: 3h on CAD-120
(including 120 long videos). Each iteration of training costs
similar time, and the convergence of ourmodel over iterations
is shown in Fig. 8. For inference,with theGPU-based parallel
implementation, it only takes around 0.4 seconds to complete
recognition on a given video with about 200 frames. For
CAD-120 and SBU, we follow the same training/test split
adopted in the comparison methods. For OA1 and OA2, we
adopt the 5-fold cross validation by ensuring that the subjects
in training set are different with those in testing set. Since
Merged_50 andMerged_4 datasets contain different subjects
in different environments, we randomly select 70, 10, 20%
video sequences from the two datasets for training, validating
and testing, respectively.

1 http://vision.sysu.edu.cn/projects/3d-activity/.

7.2 Empirical Analysis

Empirical analysis are given to assess the main components
of the proposed deep structuredmodel, including latent struc-
ture, relaxed radius–margin bound, model pre-training, and
depth/grayscale channel. Several variants of our method are
suggested by enabling/disabling some components. Specifi-
cally, we denote the conventional 3D convolutional neural
network with the softmax classifier as Softmax+CNN,
denote the 3DCNNwith the SVMclassifier as SVM+CNN,
denote the 3D CNN with the relaxed radius–margin bound
classifier as R-SVM+CNN. Analogously, we denote our
deep model as LCNN, and then define Softmax+LCNN,
SVM+LCNN, and R-SVM+LCNN accordingly.

Latent Model Structure. In this experiment, we implement
a simplified version of our model by removing the latent
structure and compare it with our full model. The simplified
model is actually a spatio-temporal CNN model includ-
ing both 3D and 2D convolutional layers, and this model
uniformly segments the input video into M sub-activities.
Without the latent variables to be estimated, the standard back
propagation algorithm is employed for model training. We
execute this experiment on CAD120 dataset. Figure 8 shows
the test error rates with different iterations of the simplified
model (i.e. CNN) and the full version (i.e. structuredCNN) in
the sameCNN initialization. Based on the results, we observe
that our full model outperforms the simplified model in both
error rate and training efficiency. Furthermore, one can see
that the structured models with model pre-training, i.e. Soft-
max+LCNN, SVM+LCNN, R-SVM+LCNN, achieve
14.4%/11.1%/12.4% better performance than the tradi-
tional CNN models, i.e. Softmax+CNN, SVM+CNN, R-
SVM+CNN, respectively. The results clearly demonstrate
the significance of incorporating latent temporal structure in
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Fig. 8 Test error rateswith/without incorporating the latent structure in
the deepmodel. The solid curve represents the deepmodel trained by the
proposed joint component learningmethod, and the dashed curve repre-
sents the traditional training way (i.e. using standard back-propagation)
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Table 1 Average accuracy with/without incorporating the latent structure on CAD 120 dataset with different top classifiers: Softmax, linear SVM,
radius–margin SVM

Ji et al. (2013) (%) Softmax+
CNN (%)

SVM+
CNN (%)

R-SVM+
CNN (%)

Softmax+
LCNN
(%)

SVM+
LCNN
(%)

R-SVM+
LCNN
(%)

Without pre-training 56.4 61.8 57.5 62.5 70.8 66.7 74.7

With pre-training 63.1 68.3 78.3 77.7 82.7 89.4 90.1

Bold values indicate the best performance in the list

Table 2 Accuracy of all categories on CAD120 dataset

Sung et al. (2012) (%) Best result
from
Koppula
et al. (2013)
(%)

Xia and Aggar-
wal (2013) (%)

Ji et al. (2013)
(%)

Best result
from
Koppula
and Saxena
(2013) (%)

R-SVM+
LCNN (%)

Arranging-objects − 33.0 75.0 68.3 50.0 91.7

Cleaning-objects − 67.0 68.3 60.0 67.0 83.3

Having-meal − 100.0 41.7 60.0 100.0 91.7

Making-cereal − 100.0 76.7 77.6 100.0 100.0

Microwaving-food − 100.0 36.7 71.7 67.0 100.0

Picking-objects − 75.0 75.0 58.3 67.0 91.7

Stacking-objects − 92.0 75.0 48.3 92.0 91.7

Taking-food − 75.0 83.3 73.3 67.0 91.7

Taking-medicine − 100.0 58.3 76.7 92.0 84.6

Unstacking-objects − 100.0 33.3 36.7 92.0 75.0

Average accuracy 59.7 84.2 62.3 63.1 83.1 90.1

Bold values indicate the best performance in the list
Accuracy per activity category and average accuracy of all categories are reported

dealing with the large temporal variations of human activi-
ties.

Pre-training. To justify the effectiveness of pre-training,
we discard the parameters trained on 2D videos, and learn
the model directly on the grayscale-depth data.

We compare the performance with/without pre-training
using SVM+LCNN and R-SVM+LCNN, as listed in
Table 1. One can see that pre-training is effective in reducing
the test error rate.Actually, the test error ratewith pre-training
is about 15% less than that without pre-training (Table 2).

Relaxed Radius–Margin Bound. As described above, the
training data for grayscale-depth human activity recogni-
tion are scarce. Thus, for the last fully connected layer, we
adopt the SVM classifier by incorporating with the relaxed
radius–margin bound, resulting in the R-SVM+LCNN
model. To justify the role of the relaxed radius–margin
bound,Table 3 compares the accuracies of Softmax+LCNN,
SVM+LCNN, and R-SVM+LCNN on all datasets with
the same experimental settings. It is observed that the max-
margin based classifiers (SVM and R-SVM) are particularly
effective on small scale datasets (CAD120, SBU, OA1, OA2,
Merged_50). On average, the accuracy of R-SVM+LCNN
is average 6.5% higher than that of Softmax+LCNN, and is

about 1% higher than that of SVM+LCNN. On Merged_4
dataset, the improvement of R-SVM+LCNN is incremen-
tally evident, 1.8% higher than Softmax+LCNN. These
results finely accord with our motivation of incorporating
the radius–margin bound into our deep learning framework.
Moreover, when the model is learned without pre-training,
R-SVM+LCNN gains about 4 and 8% improvements over
Softmax+LCNN and SVM+LCNN by accuracy, respec-
tively, as Table 1 reports.

Channel Analysis. To evaluate the contribution of the
grayscale and depth data, we execute the following exper-
iment on the OA datasets: keeping only one channel data
as input. Specifically, we first disable the depth channel and
input the grayscale data to perform the training/testing, and
then disable the grayscale channel and employ the depth
channel for training/testing. Table 4 proves that depth data
can boost the performance by large margins, especially in
OA1 andMerged_50. This is due to the fact that large appear-
ance variances existed in grayscale data. In particular, our
testing is performed on the new subjects and this would fur-
ther increase the appearance variance. On the contrary, the
depth data aremore reliable andhavemuch smaller variances,
which is helpful in capturing the salient motion information.
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Table 3 Average accuracy of
all categories on four datasets
with different classifiers

Softmax+LCNN (%) SVM+LCNN (%) R-SVM+LCNN (%)

CAD120 82.7 89.4 90.1

SBU 92.4 92.8 94.0

OA1 60.7 68.5 69.3

OA2 47.0 53.7 54.5

Merged_50 30.3 36.4 37.3

Merged_4 87.1 88.5 88.9

Bold values indicate the best performance in the list

Table 4 Channel analysis on
the three datasets

Grayscale (%) Depth (%) Grayscale+depth (%)

OA1 60.4 65.2 69.3

OA2 46.3 51.1 54.5

Merged_50 27.8 33.4 37.3

Merged_4 81.7 85.5 88.9

Bold values indicate the best performance in the list
Average accuracy of all categories are reported

Table 5 Average accuracy on
SBU dataset

Linear SVM (%) MILBoost (%) Ours (%)

Average accuracy 87.3 91.1 93.4

Bold value indicates the best performance in the list

Table 6 Quantitative results on
OA1 dataset

Xia and Aggarwal (2013) (%) Ji et al. (2013) (%) Ours (%)

Answering-phones 12.5 40.0 61.7

Arranging-files 59.7 53.3 68.3

Eating 40.3 41.7 66.7

Moving-objects 48.6 51.7 70.0

Going-to-work 34.7 41.7 68.3

Finding-objects 65.3 36.7 71.7

Mopping 63.9 66.7 76.7

Sleeping 25.0 45 81.7

Taking-water 58.3 40.0 61.7

Wandering 56.9 50.0 66.7

Accuracy 46.5 46.7 69.3

Bold values indicate the best performance in the list
Accuracy per activity category and average accuracy of all categories are reported

7.3 Experimental Results and Comparisons

CAD-120 dataset.On this dataset, we adopt five state-of-the-
art methods for comparison. Note that for different methods
we train the models using the same data annotation, which
only includes the activity labels on videos. As shown in
Table 2, our method obtains the average accuracy of 90.1%,
which is significantly superior to the results generated by
other five competing methods, i.e. 59.7% (Sung et al. 2012),
84.2% (Koppula et al. 2013), 62.3% (Xia and Aggarwal
2013), 63.1% (Ji et al. 2013) and 83.1% (Koppula and Sax-

ena 2013). Table 2 reports the accuracies per activity category
of our method and the method based on hand-crafted feature
engineering (Xia and Aggarwal 2013), the deep architecture
of convolutional neutral networks (Ji et al. 2013),2 and the
rich spatio-temporal relations modeling (Koppula and Sax-
ena 2013). Our method achieves the highest accuracies on 6
of the 10 activity categories.

2 We implement the 3D-CNN model Ji et al. (2013). For fair compar-
ison, parameter pre-training and dropout have been also employed in
our implementation, and the configuration of 3D-CNN is the same with
that of our model except that we set M = 1 for 3D-CNN.
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Table 7 Quantitative results on
OA2 dataset

Xia and Aggarwal (2013) (%) Ji et al. (2013) (%) Ours (%)

Asking-and-away 12.5 39.6 62.3

Called-away 45.8 44.8 53.5

Carrying 66.7 56.8 48.3

Chatting 37.5 17.2 57.9

Delivering 20.1 34.5 48.3

Eating-and-chatting 50.0 35.8 46.6

Having-guest 37.5 34.1 55.2

Seeking-help 16.7 44.8 56.1

Shaking-hands 41.7 32.8 51.7

Showing 37.5 29.3 64.6

Accuracy 36.6 37.0 54.5

Bold values indicate the best performance in the list
Accuracy per activity category and average accuracy of all categories are reported

Table 8 Average accuracy on
Merged_50 and Merged_4
datasets

Xia and Aggarwal (2013) (%) Ji et al. (2013) (%) Ours (%)

Merged_50 21.1 24.1 37.3

Merged_4 79.1 81.2 88.9

Bold values indicate the best performance in the list

(a)

(c)

(b)

(d)

Fig. 9 Confusion Matrices of our proposed deep structured model on a CAD120, b SBU, c OA1, d OA2 datasets. It is evident that these confusion
matrices all have a strong diagonal with few errors

SBU dataset. As shown in Table 5, our method obtains
the average accuracy of 93.4% and performs better than
the methods based on body-pose features Yun et al. (2012),

which indicates that our method is effective in learning dis-
criminative features directly from raw data for modeling
person-to-person interaction.
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OA dataset. In this experiment, we apply our method on
the two OA subsets. Tables. 6 and 7 list the accuracies per
category and average accuracy of the competing methods,
and our method outperforms the state-of-the-art methods in
terms of the average accuracy. On the OA1 set, our method
achieves the best accuracies on all categories and obtains the
highest average accuracy of 69.3%, as shown in Table. 6. On
the OA2 set, our method achieves the best accuracies on 8
out of 10 activity categories and obtains the highest average
accuracy of 54.5%, as shown in Table 7. By checking the
results, we find that the failure cases are mainly caused by
the lack of contextualized scene understanding. For example,
understanding the activities of having-guest and eating-and-
chatting actually requires extra higher level information, and
we will consider this issue in the future work.

Merged datasets. Table 8 reports the average accuracy
of the competing methods, and our method outperforms the
state-of-the-art methods (Xia and Aggarwal 2013; Ji et al.
2013) in terms of the average accuracy.

In summary, our method consistently achieves better
results than the competing methods on the three 3D activ-
ity datasets. Figure 9 shows the confusion matrices of our
model for all datasets. One can see that, the confusion matri-
ces are strongly diagonal with few errors, which indicates
that our deep structured model is effective in handling vari-
ous challenges in 3D human activity recognition.

8 Conclusion

In this paper, we have introduced, first, a deep and latent-
structured model using the convolutional neural networks.
Second, a unified formulation integrating the radius–margin
regularization with the feature learning. Third, an effective
learning algorithm that iteratively optimizes the sub-activity
decomposition, the margin-based classifier, and the neural
networks. We have demonstrated the practical applicabil-
ity of our model by effectively recognizing human activities
using a depth camera. Experiments on the public datasets
suggest that our model convincingly outperforms other state-
of-the-art methods under several very challenging scenarios.

One main drawback of our current solution is the scala-
bility of model inference. The brute-force enumeration over
all settings of the latent variables will cause extra compu-
tation cost and this issue may become much more serious
when the number (e.g., 1000) of human activity categories is
large. Apart from the scalability issue, we intend to extend
our work in the following directions. The first is to gener-
alize our model with compositional grammar rules (e.g. the
And–Or grammars), and thus deal with more complicated
event understanding (e.g. the causality inference). The sec-
ond is to revise our neural network for recognizing human
action/activity from 2D videos. Note that there are distinct

differences between 2D videos and 3D videos. For example,
these mentioned 2D datasets basically include diverse envi-
ronments (e.g., indoor/outdoor) with the cameramoving, and
the 3D depth data are all captured indoor with a fixed sen-
sor (i.e. Microsoft Kinects). In addition, the 2D videos are
usually in higher resolution than the data (i.e. 320 × 240)
captured by the depth sensor.
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